摘要A speed-flow graph is used to calibrate Wiedemann 74 model parameters. A parameter calibration platform integrating VISSIM, Matlab, and ExceLVBA is built, which minimizes the differences between the measured values and the simulated values of the speed-flow graph. The optimization methods adopt the relevant knowledge in image recognition and a genetic algorithm. This platform achieves automatic parameter optimization by iteration. The proposed parameter calibration platform calibrates the driver behavior threshold based on a speed-flow graph, provides an automated technique for parameter calibration using detector data, and provides an effective method for studying driver behavior. This platform soLÜes the low precision problem of default parameters, which is not suitable for Chinese traffic conditions. We collect traffic flow data at the south second ring road of Changsha city using a roadside laser detector. We first calibrate Wiedemann's model using collected data and the proposed parameter calibration platform. Then, we fit the driver behavior threshold curve. Finally, we analyze driver behavior passing Changsha south second ring road.
Abstract:A speed-flow graph is used to calibrate Wiedemann 74 model parameters. A parameter calibration platform integrating VISSIM, Matlab, and ExceLVBA is built, which minimizes the differences between the measured values and the simulated values of the speed-flow graph. The optimization methods adopt the relevant knowledge in image recognition and a genetic algorithm. This platform achieves automatic parameter optimization by iteration. The proposed parameter calibration platform calibrates the driver behavior threshold based on a speed-flow graph, provides an automated technique for parameter calibration using detector data, and provides an effective method for studying driver behavior. This platform soLÜes the low precision problem of default parameters, which is not suitable for Chinese traffic conditions. We collect traffic flow data at the south second ring road of Changsha city using a roadside laser detector. We first calibrate Wiedemann's model using collected data and the proposed parameter calibration platform. Then, we fit the driver behavior threshold curve. Finally, we analyze driver behavior passing Changsha south second ring road.
基金资助:Supported by the National Natural Science Foundation of China (No.71071024);the Hunan Natural Science Foundation (No.12JJ2025);the Key Project of Changsha Science and Technology Bureau (No.K1106004-11)
通讯作者:
LU Shou-feng, E-mail:itslu@126.com
E-mail: itslu@126.com
引用本文:
卢守峰, 王丽园. 宏观标定方法在Wiedemann驾驶行为阈值研究中的应用[J]. Journal of Highway and Transportation Research and Development, 2015, 9(1): 88-92.
LU Shou-feng, WANG Li-yuan. Applying a Macroscopic Calibration to a Wiedemann Driver Behavior Threshold Study. Journal of Highway and Transportation Research and Development, 2015, 9(1): 88-92.
[1] QIN Ya-qin, XIONG Jian, LIU Hong-qi, et al. Simulation Evaluation of Traffic Characteristic and Driving Safety of the Climbing Lane on a Rural Highway, Journal of Highway and Transportation Research and Development[J]. 2010, 27(11):122-126. (in Chinese)
[2] BROCKFIELD E, KÜHNE R, WAGNER P. Calibration and Validation of Microscopic Traffic Flow Models[J]. Journal of the Transportation Research Board, 2004, 1876:62-70.
[3] GOMES G, MAY A, HOROWITZ R. Congested Freeway Micro Simulation Model Using VISSIM[J]. Journal of the Transportation Research Board, 2004, 1876:71-81.
[4] SUN Jian, YANG Xiao-guang, LIU Hao-de. Study on Microscopic Traffic Simulation Model Systematic Parameter Calibration[J]. Journal of System Simulation,2007, 19(1):48-50. (in Chinese)
[5] YU Quan, WANG Meng, DENG Xiao-hui. Simulation Parameter Calibration of Single Signalized Intersection Based on Orthogonal Experiment Method[J]. Journal of Highway and Transportation Research and Development, 2012, 29(S1):57-62. (in Chinese)
[6] SANDEEP M, CARLOS S. Analysis of Wiedemann 74 and 99 Driver Behavior Parameters[R]. Kansas, Missouri:University of Missouri, Columbia, 2008.
[7] WIEDEMANN R, REITER U. Microscopic Traffic Simulation:the Simulation System MISSION, Background and Actual State[R]. Brussels:CEC, 1991.
[8] TOLEDO T, BEN-AKIVA M, DARDA D, et al. Calibration of Microscopic Traffic Simulation Models with Aggregate Data[J]. Transportation Research Board, 2004, 1876:10-19.
[9] TOLEDO T, KOUTSOPOULOS H, DAVOL A, et al. Calibration and Validation of Microscopic Traffic Simulation Tools:Stockholm Case Study[J]. Transportation Research Record, 2004, 1831:65-75.
[10] PEKALSKA E, DUIN R. The Dissimilarity Representation for Pattern Recognition[M]. Singapore:World Scientific Publishing, 2005.
[11] DUDA R, HART P. Pattern Classification and Scene Analysis[M]. Hoboken:A Wiley Interscience Publication, 1973.
[12] LIU Yong, KANG Li-shan, CHEN Yu-ping. Non Numerical Parallel Algorithms-Genetic Algorithms(Ⅱ)[M]. Beijing:Science Press, 1997. (in Chinese)
[1]
李高盛, 彭玲, 李祥, 吴同. 基于LSTM的城市公交车站短时客流量预测研究[J]. Journal of Highway and Transportation Research and Development, 2019, 13(2): 65-72.
[2]
胡宝雨, 赵琥, 孙祥龙, 王弟鑫, 刘宁. 城市公交与农村客运同步换乘模型研究[J]. Journal of Highway and Transportation Research and Development, 2019, 13(2): 73-79.
[3]
郭建科, 邱煜焜, 白家圆, 王利. 基于城市公共交通可达性的医疗服务空间分异及均等化研究——以大连市为例[J]. Journal of Highway and Transportation Research and Development, 2019, 13(2): 80-89.
[4]
赵妮娜, 赵晓华, 林展州, 葛书芳. 主线分流互通立交指路标志版面形式研究[J]. Journal of Highway and Transportation Research and Development, 2019, 13(2): 90-102.
[5]
姜明, 陈艳艳, 冯移冬, 周瑞. 路侧示警桩设置关键指标研究[J]. Journal of Highway and Transportation Research and Development, 2019, 13(1): 79-87.
[6]
蔡静, 刘莹, 张明辉. 京津冀货物运输结构调整策略研究[J]. Journal of Highway and Transportation Research and Development, 2019, 13(1): 88-93.
[7]
常云涛, 王奕彤. 连续流交叉口信号配时优化模型[J]. Journal of Highway and Transportation Research and Development, 2018, 12(4): 66-74.
[8]
林丽, 冯辉, 朱泳旭. 基于Ring-Barrier相位的干线公交协调控制[J]. Journal of Highway and Transportation Research and Development, 2018, 12(4): 85-91.
[9]
胡祖平, 何建佳. 基于网络可靠性的街区开放适宜度研究[J]. Journal of Highway and Transportation Research and Development, 2018, 12(4): 51-58.
[10]
陈红, 马晓彤, 赵丹婷. 基于元胞自动机的破损路面车辆换道仿真研究[J]. Journal of Highway and Transportation Research and Development, 2018, 12(4): 75-84.
[11]
李新, 毛剑楠, 骆晨, 刘澜. 基于MFD的路网可扩展边界控制方法研究[J]. Journal of Highway and Transportation Research and Development, 2018, 12(4): 59-65.
[12]
郝丽, 胡大伟, 李晨. T-JIT环境下企业供应链中采购管理供应商选择和订单分配研究[J]. Journal of Highway and Transportation Research and Development, 2018, 12(3): 80-89.
[13]
姚佼, 徐洁琼, 倪屹聆. 城市干道多时段协调控制优化研究[J]. Journal of Highway and Transportation Research and Development, 2018, 12(3): 60-70.
[14]
潘兵宏, 余英杰, 武生权, 严考权. 基于UC-win/Road仿真的高速公路出口预告标志前置距离研究[J]. Journal of Highway and Transportation Research and Development, 2018, 12(3): 71-79.
[15]
何南, 李季涛. 考虑运输方式间影响关系的公路客运交通需求预测[J]. Journal of Highway and Transportation Research and Development, 2018, 12(3): 90-96.